Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to afford Silene Hydride Complexes

Jeffrey S. Price, David J. H. Emslie,* and James F. Britten

Dedicated to Professor Neil G. Connelly on the occasion of his 72nd birthday

Abstract: Reaction of the ethylene hydride complex *trans*-[(dmpe)₂MnH(C₂H₄)] (1) with Et₂SiH₂ at 20 °C afforded the silylene hydride [(dmpe)₂MnH(=SiEt₂)] (2a) as the *trans* isomer. By contrast, reaction of 1 with Ph₂SiH₂ at 60 °C afforded [(dmpe)₂MnH(=SiPh₂)] (2b) as a mixture of the *cis* (major) and *trans* (minor) isomers, featuring a Mn–H–Si interaction in the former. The reaction to form 2b also yielded [(dmpe)₂MnH₂(SiHPh₂)] (3b); [(dmpe)₂MnH₂(SiHR₂)] {R = Et (3a) and Ph (3b)} were accessed cleanly by reaction of 2a and 2b with H₂, and the analogous reactions with D₂ exclusively afforded [(dmpe)₂MnD₂(SiHR₂)]. Both 2a and 2b engaged in unique reactivity with ethylene, generating the silene hydride complexes *cis*-[(dmpe)₂MnH(R₂Si=CHMe)] {R = Et (4a) and Ph (4b)}. Compounds *trans*-2a, *cis*-2b, 3b and 4b were crystallographically characterized, and bonding in 2a, 2b, 4a, and 4b was probed computationally.

The first compound containing a transition metal–silicon bond, $[CpFe(CO)_2(SiMe_3)]$, was reported by Wilkinson in 1956,^[1] and over the past 60 years the area has undergone remarkable development, including the stabilization of reactive species such as silylenes (SiR₂) and silenes (R₂Si=CR₂) by metal coordination.

Silylene ligands can be divided into two categories: electronically/sterically stabilized silylenes, such as Nheterocyclic silylenes,^[2] and reactive silylenes with fleeting existences in the absence of metal coordination.^[3] Complexes of silylenes in the latter category have been postulated as intermediates in catalytic processes involving silanes (e.g. dehydrocoupling, substituent redistribution, hydrosilylation, and the Direct process for silane chlorination),^[4] and a range of terminal silvlene complexes have been isolated for transition metals in groups 8-10.^[5] These complexes are electrophilic at silicon, and in many cases were prepared by abstraction of a hydride or halide from an α -hydrosilyl or α -halosilyl precursor, or α -hydride elimination from an α -hydrosilyl complex.^[6] For mid-and early-transition metals, electrophilic group 6 (Mo and W) silvlene complexes have been isolated,^[7-9] nucleophilic group 4 (Ti and Hf) silylene complexes were recently reported,^[10-11] and group 5 (V) silylene complexes have been proposed on the basis of EPR or elemental analysis.[12]

In the case of silene complexes, only a handful have been isolated, with examples bearing sterically/electronically-unstabilized silene ligands^[13] confined to complexes of Ir,^[14-15] Ru,^[16-21] and W.^[22] These complexes were generated via one of three methods: (i) β -X (X = H or Cl) elimination from silicon in an M–CH₂SiXR₂ (M = Ru or Ir) fragment,^[15-18] (ii) β -H elimination from

[*] J. S. Price, Prof. D. J. H. Emslie, Dr. J. F. Britten Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4M1 (Canada) E-mail: <u>emslied@mcmaster.ca</u>

Supporting information for this article is given via a link at the end of the document.

carbon in an M-SiMe₂R (M = Ru or Ir) fragment,^[14, 19-21] and (iii) reductive dechlorination of $[Cp_2WCl(CH_2SiClMe_2)]$.^[22] In contrast, first row transition metal complexes bearing unstabilized silene ligands have not been isolated. For example, $[CpFeH(CO)(CH_2SiMe_2)]$ was generated by low temperature photolysis of $[CpFe(CO)_2(CH_2SiMe_2H)]$, but converted to $[CpFe(SiMe_3)(CO)_2]$ above 225 K.^[23]

Herein we present an unprecedented transformation of a silylene into a silene ligand, as well as the first examples of isolable group 7 complexes bearing an unstabilized terminal silylene ligand, and first row transition metal complexes bearing an unstabilized silene ligand.

Scheme 1. Reactions of $[(dmpe)_2MnH(C_2H_4)]$ with R_2SiH_2 to form *trans*-2a (R = Et) or a mixture of *cis*-2b, *trans*-2b and 3b (R = Ph), and subsequent reactions of the silylene hydride complexes (*trans*-2a or *cis*- and *trans*-2b) with H₂ to form 3a (R = Et) and 3b (R = Ph), respectively.

Girolami and Wilkinson's $[(dmpe)_2MnH(C_2H_4)]$ (1) complex^[24] reacted with Et₂SiH₂ (4.5 equiv.) at room temperature to form $[(dmpe)_2MnH(=SiEt_2)]$ (2a) with release of ethane (Scheme 1). Compound 2a gave rise to one ³¹P resonance, a hydride ¹H NMR signal at -10.46 ppm, and a ²⁹Si resonance at 365.3 ppm, characteristic of a C_{2v} symmetric trans silylene hydride complex (note: 1-2% of an unidentified product was always observed in ¹H NMR spectra of 2a, and may be the cis isomer). An X-ray crystal structure of 2a (Figure 1; 4 independent molecules in the unit cell) confirmed this assignment, revealing an octahedral geometry at manganese, trigonal planar geometry at silicon [Σ (C-Si-X) = 360.0(1)°; X = C or Mn], and a Mn–H distance of 1.60(3)-1.62(3) Å. The Mn-Si distance in 2a is 2.1880(12)-2.1948(12), which compares well with the Fe-Si distance of 2.154(1) in [CpFe(SiMe₃)(CO)(=SiMes₂)],^[25] taking into consideration the larger ionic radius of Mn(I) vs Fe(II), and is much shorter than the Mn-Si distances of 2.2789(9)-2.3571(7) Å in the base-stabilized N-heterocyclic silylene complexes

Figure 1. X-ray crystal structures of (a) *trans*-[(dmpe)₂MnH(=SiEt₂)] (*trans*-2a) and (b) *cis*-[(dmpe)₂MnH(=SiPh₂)] (*cis*-2b) with ellipsoids at 50% probability. Most hydrogen atoms have been omitted for clarity. Compound *cis*-2b co-crystallized with [(dmpe)₂MnH₂(SiHPh₂)] (3b), with superimposed (dmpe)₂Mn and phenyl groups. Only the structure of *cis*-2b is shown in this Figure; an X-ray structure of pure 3b was independently obtained and is shown in Figure 2.

Figure 2. X-ray crystal structures of (a) $[(dmpe)_2MnH_2(SiHPh_2)]$ (3b) and (b) *cis*- $[(dmpe)_2MnH(Ph_2Si=CHMe)]$ (4b) with ellipsoids drawn at 50% probability. Most hydrogen atoms have been omitted for clarity.

The reaction to form **2a** and ethane likely occurs via an undetected 5-coordinate manganese ethyl complex, [(dmpe)₂MnEt], formed by isomerization of **1** to place the hydride and alkene *cis* to one another, followed by 1,2-insertion. This ethyl complex can undergo σ -bond metathesis with Et₂SiH₂ {or Si–H bond oxidative addition (OA) followed by C–H bond forming reductive elimination (RE)} to form a low-coordinate hydrosilyl intermediate, [(dmpe)₂Mn(SiHR₂)] (**A**; R = Et), which isomerizes to **2a** by α -hydride elimination.

Compound 1 also reacted with Ph₂SiH₂ at 60 °C to afford [(dmpe)₂MnH(=SiPh₂)] (2b) as an approximate 50:50 mixture with [(dmpe)₂MnH₂(SiHPh₂)] (3b), releasing ethane and Ph₂EtSiH (Scheme 1); **3b** may form via initial σ -bond metathesis (or OA/RE) between [(dmpe)₂MnEt] and Ph₂SiH₂ to afford "(dmpe)₂MnH" and Ph2EtSiH, followed by oxidative addition of a second equivalent of Ph₂SiH₂.^[30] Compounds 2b and 3b could not be separated, but the mixture could be converted entirely to $\mathbf{3b}$ by reaction with H_2 . Similarly, compound 2a reacted cleanly with H₂ to generate [(dmpe)₂MnH₂(SiHEt₂)] (3a) (Scheme 1), and in solution, 3a and 3b each exist as an equilibrium mixture of two isomers, one of which was structurally characterized for 3b (Figure 2). Compound 2b was characterized in solution, and shown to exist as an 88:12 mixture of interconverting silylene hydride isomers: a major C1symmetric cis isomer with a hydride ¹H NMR signal at -16.22 ppm, a ²⁹Si NMR shift of 210.2 ppm, and four broad ³¹P environments at -20 °C; and a minor C_{2v} trans isomer with one ³¹P environment, a hydride ¹H NMR signal at –9.78 ppm, and a ²⁹Si NMR shift of 285.1 ppm.

Maintaining a toluene solution of 2b/3b at -30 °C afforded crystals containing a 50:50 mixture of cis-2b and 3b (confirmed by NMR spectroscopy) with superimposed (dmpe)₂Mn fragments and phenyl rings. Distinct silicon atom positions are observed for cis-2b and 3b, but the resulting structures are only suitable to establish connectivity. In the structure of cis-2b (Figure 1), the four phosphorus atoms and silicon form an approximate trigonal bipyramid, with the Si-phenyl groups in the equatorial plane. Silicon is trigonal planar, and electron density consistent with the hydride ligands in cis-2b and co-crystallized 3b was located on either side of the Mn-Si bond (due to crystallographic disorder in the case of cis-2b), above and below the C(1)/Si/C(1') plane. DFT calculations (gas phase, all-electron, PBE, TZ2P, ZORA, D3-BJ) support a close interaction between the hydride ligand and the silicon atom in cis-2b, yielding distances of 2.168 and 1.665 Å for the Mn-Si and Mn-H bonds, a Si-H distance of 1.726 Å, and angles of 51.5 and 49.0° for the H-Mn-Si and H-Si-Mn linkages. These values compare well with those of other silvlene hydride complexes featuring strong Si-H interactions, including the X-ray structures of $[(C_5Me_4Et)(CO)_2WH-\{=SiHC(SiMe_3)_3\}]$ and $[(1,2-C_2H_4(P^tBu_2)_2]NiH(=SiMes_2)]^+, [7]$ and the Neutron structure of $[Cp^{*}(dmpe)Mo(H)(=SiEt_{2})]^{[8]}$ (Si-H = 1.71(6), 1.64(7) and 1.68(1) Å; H–M–Si = 46(2), 49(2) and 45.5(4)°; and H–Si–M = 50(2), 51(2) and 51.5(4)°, respectively).

Compound **2b** is the first silylene hydride complex observed to exist as distinct isomers with and without an M–H–Si interaction, providing a unique opportunity to probe the nature of the Mn–Si and Si–H interactions. Surprisingly, DFT calcul-ations show slightly shorter Mn–Si distances in *cis*-2a,b versus *trans*-2a,b (Mn–Si = 2.168-2.175 Å for *cis* vs 2.184-2.187 Å for *trans*). However, the Mn–Si Mayer bond orders for *cis*-2a and *cis*-2b (1.25 and 1.19) are notably less than those for *trans*-2a and *trans*-2b (1.54 and 1.52), and the same trend is observed in Nalewajski-Mrozek and Gopinathan-Jug bond orders.

Fragment analysis of cis- and trans-2a using the combined Extended Transition State and Natural Orbitals for Chemical Valence (ETS-NOCV) method revealed similarities in the bonding between the (dmpe)₂MnH and SiEt₂ fragments in both isomers of 2a (Figures 3-4). In particular, bonding in both complexes involves σ -donation from the silylene HOMO to the (dmpe)_2MnH LUMO, accompanied by $\pi_{{\ensuremath{\mathbb I}}}\xspace$ -backdonation into a silylene orbital that is $\sigma\text{-antibonding}$ with respect to the Si–C bonds. However, $\pi_{\!\scriptscriptstyle \perp}\text{-}\text{backdonation}$ primarily involves the silylene LUMO and a filled Mn-H σ -bonding orbital (HOMO-3) in *cis*-2a, versus a filled manganese d-orbital in trans-2a. The Hirshfeld charge on the SiEt₂ fragment is more negative in trans-2a than cis-2a (-0.29 vs –0.18), indicative of less effective σ -donation and/or more effective π -backdonation in the former. Nevertheless, the silicon atoms in both isomers of 2a and 2b are electrophilic, based on positive Hirshfeld charges on the silicon atoms (0.20 to 0.22), negative Hirshfeld charges on manganese (-0.25 to -0.27), and positive electrostatic potentials at silicon.

Both **2a** and **2b** reacted with ethylene (1.7 atm, 25 °C) to form silene hydride products, *cis*-[(dmpe)₂MnH(R₂Si=CHMe)] {R = Et (**4a**) and Ph (**4b**)} (Scheme 2), conceptually achieving addition of the carbene isomer of ethylene (CHMe) to the silylene (SiEt₂ or SiPh₂); compound **4a** was isolated in pure form, whereas **4b** was isolated as an approximate 50:50 mixture with **3b** which was present in the starting material. Compounds **4a** and **4b** gave hydride ¹H NMR signals at -15.30 and -14.56 ppm, ²⁹Si resonances at -2.95 and 1.47 ppm, and characteristic silene ¹³C NMR signals at -19.37 and -22.93 ppm, respectively.

Figure 3. Deformation density contributions $\Delta\rho_1$, $\Delta\rho_2$ and $\Delta\rho_3$ to bonding between the SiEt₂ and (dmpe)₂MnH fragments in (a) *trans*-2a, (b) *cis*-2a and (c) 4a; green and yellow represent increased and decreased electron density, respectively, relative to the fragments; isosurfaces are set to 0.003.

Figure 4. Key fragment orbitals contributing to Δp_1 and Δp_2 in (a) *cis*-2a and (b) 4a; isosurfaces are set to 0.04.

An X-ray crystal structure of **4b** (Figure 2) revealed a distorted octahedral geometry in which the hydride interacts with the silicon atom of the silene. The silene Si–C(1) distance in **4b** is 1.781(5) Å, which is at the short end of the range previously reported for silene complexes (1.773(4)-1.838(11) Å),^[13-22] and the Mn–C(1) distance is over 0.10 Å shorter than the M–Si distance {2.270(4) vs 2.409(2) Å}, as observed for all other silene complexes. The sum of the X–C(1)–X (X = Si, H or C) and C–Si–C angles (346(2) and 343.5(2)°) are also consistent with

considerable silene character. However, the Mn–H and H–Si distances of 1.56(5) and 1.55(4) Å (calcd. 1.653 and 1.648 Å), as well as a large ${}^{1}J_{Si,H}$ coupling of 90 Hz in **4b**, clearly indicate a significant interaction between the hydride ligand and silicon.

Fragment interaction and ETS-NOCV calculations on **4a** (Figures 3-4) reveal three major interactions between the silene and (dmpe)₂MnH fragments. The first two contributions involve σ -donation from the silene π -bond (HOMO) to the LUMO of the (dmpe)₂MnH fragment, combined with π_{II} -backdonation from a filled Mn–H σ -bonding orbital (HOMO-3) into the silene π^* orbital (LUMO), whereas the 3rd contribution involves π_{II} -back-donation to the silene. Parallels in the bonding descriptions for *cis-2b* and **4b** arise from the very similar geometries of the (dmpe)₂MnH fragments in these complexes, and the analogous symmetries and orientations of the HOMO and LUMO of the silylene and silene fragments relative to the M–H bond.

 $\label{eq:scheme 2. Reaction of [(dmpe)_2MnH(=SiR_2)] (2a,b) with ethylene to form [(dmpe)_2MnH(R_2Si=CHMe)] {R = Et (4a) and Ph (4b)}.$

Scheme 3. Two potential pathways for the formation of $[(dmpe)_2MnH-(R_2Si=CHMe)]$ {R = Et (4a) and Ph (4b)} via reaction of $[(dmpe)_2MnH(=SiR_2)]$ (2a,b) with ethylene. [Mn] = "(dmpe)_2Mn" and [MnH] = "(dmpe)_2MnH".

Several mechanisms could be proposed for the formation **4a** and **4b**, but the reactions of **2a** and **2b** with *d*₄-ethylene to form *cis*-[(dmpe)₂MnH(R₂Si=CDCD₃)] rule out a mechanism involving initial insertion of ethylene into a Mn–H bond. Alternative possibilities are shown in Scheme 3. In mechanism I, a low-coordinate silyl complex, [(dmpe)₂Mn(SiHR₂)] (**A**), is accessed from the *cis*-silylene hydride complex, and from this point, two cycles of 1,2-insertion and β -hydride elimination would afford the silene hydride product. In mechanism II, the Si=C double bond of the silene initially engages in 2+2 cycloaddition with ethylene to form a metallasilacyclobutane which then undergoes Si–H bond-forming reductive elimination.

Mechanism II lacks precedent in silicon chemistry, although silylene 2+2 cycloaddition chemistry has been obser-ved for isocyanates,^[31] proposed as a possibility for nitriles,^[32] isothiocyanates,^[33] and ketones,^[34] and observed for alkynes in combination with Schrock-type titanium silylene complexes.^[10] By contrast, mechanism I is supported by: (a) the likely intermediacy of species **A** in the reaction to form **2a** from **1** (*vide supra*), (b) DFT calculations, which show that low-coordinate hydrosilyl isomers of **2a** and **2b**, [(dmpe)₂Mn(SiHR₂)] (**A**; R=Et or Ph), exist as minima located 25 and 42 kJ mol⁻¹ higher in energy than *cis*-**2a** and *cis*-**2b** respectively, and (c) the reactions of **2a** and **2b** with D₂ which exclusively form [(dmpe)₂MnD₂(SiHR₂)] (R=Et; d₂-**3a**, R=Ph; d₂-**3b**), indicative of reactivity stemming from intermediate **A** rather than directly from a silylene hydride.

Future work will probe the scope of the stoichiometric reactions of **1** with hydrosilanes followed by alkenes. Additionally, silene complex **4a** is an active catalyst or pre-catalyst for alkene hydrosilylation (2 mol% of **4a** effected >60% conversion of ethylene and diethylsilane to triethylsilane after 24 h at 60 °C). However appreciable amounts of **1**, **2a** and **3a** were formed as the reaction progressed, and additional studies will be undertaken to evaluate the role of these species in catalysis.

Experimental Section

Full experimental and characterization details for new complexes, details of DFT calculations, NMR spectra of new compounds and X-ray selectively deuterated analogues, and powder diffractograms for a 2b/3b mixture and pure 3b are included in the Supporting Information. CCDC 1529213-1529216 contain the supplementary crystallographic data for 4b, trans-2a, 3b and cis-2b, respectively. These data can be obtained free of charge from Cambridge Crystallographic Data Centre via The www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

D.J.H.E. thanks NSERC of Canada for a Discovery Grant and J.S.P. thanks the Government of Ontario for an OGS. We are grateful to Adam Macintosh and Dr. Kris Harris in the Goward group at McMaster University for several NMR measurements on **2b/3b**, to Dr. Fan Fei at McMaster for mass spectrometry analysis, and to Prof. I. Vargas-Baca for helpful discussions regarding computational experiments.

Keywords: Hydride ligands • Manganese • Si ligands • Silene ligands • Silylene ligands

- [1] T. S. Piper, D. Lemal, G. Wilkinson, Naturwissenschaften 1956, 43, 129.
- [2] a) M. Kira, J. Organomet. Chem. 2004, 689, 4475; b) N. J. Hill, R. West, J. Organomet. Chem. 2004, 689, 4165.
- a) M. Weidenbruch, *Coord. Chem. Rev.* 1994, 130, 275; b) N. Tokitoh,
 W. Ando in *Reactive Intermediate Chemistry* (Eds. R. A. Moss, M. S. Platz, M. Jones Jr.) John Wiley & Sons, Inc., Hoboken New Jersey, 2004, pp. 651-715.
- [4] M. Okazaki, H. Tobita, H. Ogino, *Dalton Trans.* 2003, 493, and references therein.
- [5] M. S. Eisen in *The Chemistry of Organic Silicon Compounds, Vol. 2*, (Eds. R. Rappoport, Y. Apeloig), John Wiley & Sons, Chichester

England, 1998, pp. 2037-2128.

- [6] R. Waterman, P. G. Hayes, T. D. Tilley, Acc. Chem. Res. 2007, 40, 712.
- a) T. Watanabe, H. Hashimoto, H. Tobita, *Angew. Chem., Int. Ed.* 2003, 43, 218.; *Angew. Chem.* 2004, *116*, 220; b) V. M. Iluc, G. L. Hillhouse, *J. Am. Chem. Soc.* 2010, *132*, 11890.
- [8] B. V. Mork, T. D. Tilley, A. J. Schultz, J. A. Cowan, J. Am. Chem. Soc. 2004, 126, 10428.
- [9] a) T. Watanabe, H. Hashimoto, H. Tobita, *Chem. Asian J.* 2012, 7, 1408; b) B. V. Mork, T. D. Tilley, *J. Am. Chem. Soc.* 2001, *123*, 9702; c) K. Takanashi, V. Y. Lee, T. Yokoyama, A. Sekiguchi, *J. Am. Chem. Soc.* 2009, *131*, 916.
- [10] V. Y. Lee, S. Aoki, T. Yokoyama, S. Horiguchi, A. Sekiguchi, H. Gornitzka, J.-D. Guo, S. Nagase, J. Am. Chem. Soc. 2013, 135, 2987.
- [11] N. Nakata, T. Fujita, A. Sekiguchi, J. Am. Chem. Soc. 2006, 128, 16024.
- [12] a) A. Shinohara, J. McBee, R. Waterman, T. D. Tilley, Organometallics 2008, 27, 5717; b) A. V. Lalov, M. P. Egorov, O. M. Nefedov, V. K. Cherkasov, N. L. Ermolaev, A. V. Piskunov, *Russ. Chem. Bull.* 2005, 54, 807.
- Pt and Ni silene complexes featuring coordination to a stabilized silene:
 a) D. Bravo-Zhivotovskii, H. Peleg-Vasserman, M. Kosa, G. Molev, M. Botoshanskii, Y. Apeloig, *Angew. Chem., Int. Ed.* 2004, *43*, 745.; *Angew. Chem.* 2004, *116*, 763. b) N. Nakata, R. Rodriguez, T. Troadec, N. Saffon-Merceron, J.-M. Sotiropoulos, A. Baceiredo, T. Kato, *Angew. Chem., Int. Ed.* 2013, *52*, 10840.; *Angew. Chem.* 2013, *125*, 11040.
- [14] S. R. Klei, T. D. Tilley, R. G. Bergman, *Organometallics* **2001**, *20*, 3220.
- [15] B. K. Campion, R. H. Heyn, T. D. Tilley, J. Am. Chem. Soc. 1990, 112, 4079.
- [16] V. K. Dioumaev, P. J. Carroll, D. H. Berry, Angew. Chem., Int. Ed. 2003, 42, 3947.; Angew. Chem. 2003, 115, 4077.
- [17] B. K. Campion, R. H. Heyn, T. D. Tilley, A. L. Rheingold, J. Am. Chem. Soc. 1993, 115, 5527.
- [18] B. K. Campion, R. H. Heyn, T. D. Tilley, J. Am. Chem. Soc. 1988, 110, 7558.
- [19] V. K. Dioumaev, K. Ploessl, P. J. Carroll, D. H. Berry, Organometallics 2000, 19, 3374.
- [20] V. K. Dioumaev, K. Ploessl, P. J. Carroll, D. H. Berry, J. Am. Chem. Soc. 1999, 121, 8391.
- [21] V. Montiel-Palma, M. A. Munoz-Hernandez, T. Ayed, J.-C. Barthelat, M. Grellier, L. Vendier, S. Sabo-Etienne, *Chem. Commun.* 2007, 3963.
- [22] T. S. Koloski, P. J. Carroll, D. H. Berry, J. Am. Chem. Soc. 1990, 112, 6405.
- [23] C. L. Randolph, M. S. Wrighton, Organometallics 1987, 6, 365.
- [24] G. S. Girolami, G. Wilkinson, M. Thornton-Pett, M. B. Hursthouse, J. Am. Chem. Soc. 1983, 105, 6752.
- [25] H. Tobita, A. Matsuda, H. Hashimoto, K. Ueno, H. Ogini, Angew. Chem., Int. Ed. 2003, 43, 221.; Angew. Chem. 2004, 116, 3158.
- [26] R. Azhakar, H. W. Roesky, J. J. Holstein, B. Dittrich, *Dalton Trans.* 2012, 41, 12096.
- [27] R. Azhakar, S. P. Sarish, H. W. Roesky, J. Hey, D. Stalke, *Inorg. Chem.* 2011, 50, 5039.
- [28] W. A. Herrmann, E. Voss, E. Guggolz, M. L. Ziegler, J. Organomet. Chem. 1985, 284, 47.
- [29] G. L. Simon, L. F. Dahl, J. Amer. Chem. Soc. 1973, 95, 783.
- [30] Formation of Ph₂EtSiH in the reaction to form **2b** and **3b** could alternatively occur via the following sequence: (i) dissociation of ethylene from [(dmpe)₂MnH(C₂H₄)], and oxidative addition of Ph₂SiH₂ to form **3b**, (ii) concurrent formation of **2b** (cis and trans isomers) via the mechanism proposed in the text, (iii) reaction of **2b** with ethylene (formed in step i) to generate silene complex **4b**, and (iv) an equilibrium between **4b** and [(dmpe)₂Mn(CHMeSiPh₂H)] or [(dmpe)₂Mn(SiPh₂Et)], either of which could undergo σ -bond metathesis with additional Ph₂SiH₂ to form Ph₂EtSiH and [(dmpe)₂Mn(SiHPh₂)] (**A**), which would isomerize to **2b** by α -hydride elimination. Indeed, **4b** does react rapidly and cleanly with Ph₂SiH₂ at 60 °C to form **2b** and Ph₂EtSiH.
- [31] G. P. Mitchell, T. D. Tilley, J. Am. Chem. Soc. 1997, 119, 11236.
- [32] M. Ochiai, H. Hashimoto, H. Tobita, Angew. Chem., Int. Ed. 2007, 46, 8192.; Angew. Chem. 2007, 119, 8340.
- [33] M. Ochiai, H. Hashimoto, H. Tobita, Organometallics 2012, 31, 527.
- [34] E. Calimano, T. D. Tilley, Organometallics 2010, 29, 1680.

Entry for the Table of Contents

Layout 2:

COMMUNICATION

The alkene hydride complex, *trans*-[(dmpe)₂MnH(C₂H₄)] eliminates ethane upon reaction with secondary silanes, yielding both *cis*- and *trans*-isomers of the silylene hydride complexes [(dmpe)₂MnH(=SiR₂)]. Subsequent reaction with ethylene yielded silene hydride complexes, [(dmpe)₂MnH(R₂Si=CHMe)], most likely via an undetected low-coordinate silyl isomer, [(dmpe)₂Mn(SiHR₂)], in equilibrium with the silylene hydrides.

Jeffrey S. Price, Prof. David J. H. Emslie, Dr. James F. Britten

Page No. – Page No.

Manganese Silylene Hydride Complexes: Synthesis and Reactivity with Ethylene to afford Silene Hydride Complexes